$('#s1').cycle('fade');
  جستجو

 صفحه نخست  |  راهنمای فروشگاه  |  تماس با ما  |نحوه خرید  |  سبد خرید   |        ثبت شده در سايت ساماندهي كشور

مقالات رایگان دانشجویی > برق و الکترونیک و مخابرات

Bank Sepah:5892-1010-5735-6012

Email: dociran.pdfiran@gmail.com

09153255543  عالم زاده

 مقالات رایگان برق ، الکترونیک و مخابرات
برق

تاریخ ایجاد 1389/09/29  تعدادمشاهده  1852

 

برق
توان الکتریکیکه اغلب به عنوانبرقیاالکتریسیتهشناخته می شود، شامل تولید وارایهانرژی الکتریکی به میزان کافی برای راه اندازی لوازم خانگی، تجهیزات اداری، دستگاههای صنعتی و فراهم آوردن انرژی کافی برای روشنایی، پخت و پز، گرمای خانگی و صنعتی وفرایندهای صنعتی بکار می رود.

تاریخچه
اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیایی ای کهدر یک پیل الکترولیک از زمانی کهالساندرو ولتادر سال1800ماین آزمایش را انجام داد، شناخته میشده است، اما تولید آن به این روش گران بوده و هست. در سال 1831م،میشل فارادیماشینی ابداع کرد که از حرکتچرخشی تولید الکتریسته می کرد، اما حدود پنجاه سال طول کشید تا این فن آوری از نظراقتصادی مقرون به صرفه شود. در سال 1878م،توماس ادیسونجایگزین عملی تجاری ای را برایروشنایی های گازی و سیستم های حرارتی ایجاد کرد و به فروش رساند که از الکتریستهجریان مستقیمی استفاده می کرد که بطور منطقه ای تولید و توزیع شده بود، استفاده میکرد. در سیستم جریان مستقیم ادیسون، ایستگاه های تولید توان اضافی می بایست نصب میشدند. بدلیل اینکه ادیسون قادر نبود سیستمی را تولید کند که به ژنراتورهای چندگانهاجازه بدهد که به یکدیگر متصل شوند، گسترش سیستم او نیاز داشت که تمامی ایستگاه هایتولید جدید مورد نیاز ساخته شوند.

نیاز به نیروگاه های اضافی ابتدا توسط
قانون اهم بیان شده است: بدلیل اینکه تلفات با مربع جریان یا بار و با خودمقاومت متناسب است، بکار بردن کابل های طولانی در سیستم ادیسون به مفهوم داشتنولتاژهای خطرناکدر برخی نقاط یا کابل های بزرگ و گران قیمت و یا هر دوی اینها بود.

نیکولا تسلا که مدت کوتاهی برای ادیسون کار می کرد و تئوری الکتریسته را بگونه ای درککرده بود که ادیسون درک نکرده بود، سیستم جایگزینی را ابداع کرد که ازجریان متناوب استفاده می کرد. تسلا بیان داشت که دو برابر کردنولتاژ جریان رانصف می کند و منجر به کاهش تلفات به میزان 4/3 می شود و تنها یک سیستم جریان متناوباجازهانتقال بینسطوحولتاژ را در قسمتهای مختلف آن سیستم ممکن می سازد. او به توسعه و تکمیل تئوری کلی سیستم اش ادامهداد و جایگزین تئوری و عملی ای را برای تمامی ابزارهای جریان مستقیم آن زمان ابداعکرد و ایده های بدیعش را در سال 1887مدر 30 حق انحصاری اختراع به ثبترساند.

در سال 1888مکار تسلا مورد توجهجرج وستینگهاوسکه حق انحصاری اختراع یکترانسفورماتور را در اختیار داشت و یک کارخانه روشنایی را از سال 1886مدرگریت بارینگتون، ماساچوستراه اندازی کردهبود، قرار گرفت. اگرچه که سیستم وستینگهاوس می توانست از روشنایی های ادیسوناستفاده کند و دارای گرم کننده نیز بود، اما این سیستم دارای موتور نبود. توسط تسلاو اختراع ثبت شده اش، وستینگهاوس یک سیستم قدرت برای یک معدن طلا درتلورید، کلورادودر سال 1891 ساخت که دارای یک ژنراتور آبی 100 اسببخار(75 کیلو وات) بود که یک موتور 100 اسب بخار (75 کیلو وات) را در آنسویخط انتقالیبه فاصله 5/2 مایل (4 کیلومتر) تغذیه می کرد. سپس در یک قرارداد باجنرال الکتریککه ادیسون مجبور به فروش آنشده بود، شرکت وستینگهاوس اقدام به ساخت یک نیرگاه درنیاگارا فالسکرد که دارای سه ژنراتور تسلای 5000 اسب بخار بود که الکتریسته را به یک کوره ذوب آلومینیوم درنیاگارا ، نیویورکو به شهربوفالو، نیویورکبه فاصله 22 مایل (35کیلومتر) انتقال می داد. نیروگاه نیاگارا در 20 آوریل 1895مشروع به کار کرد.

انرژی الکتریکی در حال حاضر
امروزه سیستمانرژی الکتریکی جریان متناوبتسلا کماکانمهمترین ابزار ارایه انرژی الکتریکی به مصرف کنندگان در سراسر جهان است. با وجودجریان مستقیم ولتاژ بالا (HVDC) برای ارسال مقادیر عظیم الکتریسته در طول فواصل بلندبکار می رود، اما قسمت اعظمتولید الکتریسته،انتقال توان الکتریکی،توزیع الکتریستهوداد و ستد الکتریستهبا استفاده از جریانمتناوب محقق می شود.
در بسیاری از کشورها شرکت های توان الکتریکی کلیهزیرساخت ها را از نیروگاه ها تا زیرساخت های انتقال و توزیع در اختیار دارند. بههمین علت، توان الکتریکی به عنوان یکحق انحصاری طبیعیدر نظر گرفته می شود. صنعتعموماْ به شدت با کنترل قیمت ها کنترل می شود و معمولا مالکیت و عملکرد آن در دستدولت است. در برخی کشورهابازارهای الکتریستهوسیع با تولید کننده هاوفروشندگان الکتریسته، الکتریسته را مانندپول نقد و سهام معامله می کنند.

فيزيك نيمه رسانا
ترانزيستور
در اواسط قرن نوزدهم با فراگير شدن راديو و تلويزيون ضرورت بهبود بخشيدن به كيفيت لامپهاي ديودي وتريودي احساس گرديد . تا اينكه در 23 دسامبر 1947 ترانزيستور توسط سه فيزيكدان به نامهاي شاكلي؛باردين وبرتين به صنعت الكترونيك معرفي گرديد.
اولين ترانزيستور دنيا از يك نارساناي مثلثي تشكيل شده كه توسط دوسوزن طلا به نيمه رساناي ژرمانيم متصل ميشود .اين ترانزيستور برعكس لامپهاي ديودي براي به گرما احتياج نداشت وسريعا به كار مي افتاد و همچنين بسيار سبكتر و ارزانتر از لامپهاي ديودي بود .
بدين ترتيب شاكلي و همكاران وي به كمك فيزيك نيمه رسانا انقلابي را در عرصه الكترونيك پديد اوردند وبه پاس اين اختراع مهم اين محققان مفتخر به دريافت جايزه نوبل گرديدند.
ترانزيستور به سرعت روند تكاملي خود را طي مينمود به طوريكه در سال 1948 ترانزيستور صفحه اي ساخته شد.
امروزه ترانزيستورها عموما pnp,npn هستند كه بعنوان كليد قطع و وصل جريان ويا بعنوان تقويت كننده در مدارات الكترونيكي استفاده مي شوند.
در سالهاي 1950 و 1970 به دليل استفاده از ترانزيستور حجم وسايل ا لكترونيكي بسار كوچك شد به همين دليل به واژه ميكروالكترونيك متدول گرديد.
ميكروالكترونيك نيز بسرعت رشد مي كرد .بطوريكه امروزه با استفاده از فن سا ختمان اكسيد فلز مي توان تعداد زيادي از ترانز يستورها را بر روي يك نيمه رسانا جا داد.
امروزه از اكسيدهاي نيمه رسانا مانند اكسيد روي در ترانزيستورهاي با سرعت انتقال بالا استفاده مي گرد ( ترانزيستورهاي فايل افكت -FET) جديدا محققان ژاپني هيدو هوسونو و كولت كاگوش از يك صفحه نيمه رساناي كريستال مجرد درترانزستورهاي فايل افكت استفاده كردند كه سرعت انتقال ان 80 سانتيمتر مربع ولت بر ثانيه است كه دها بار سريعتر از ترانزيستورهاي قبلي مي باشد(ساختمان مولكولي ان در شكل زير ديده مي شود)
اگرچه اين ترانزيستور فعلا بسيار گران است ولي اين تحقيقات نشان داد كه امكان رسيدن به سرعتهاي بالا وجود دارد.
يك باطري آبي
در يك تلاش ديگر از اين دست لاري كاستيوك از دانشگاه آلبرتاي كانادا در حال كار روي يك نوع باتري است كه نيروي خود را از آب مي گيرد، يعني توليد الكتريسيته به طور مستقيم از آب ، اما در مقياس بسيار كوچك.
در حال حاضر نيز واژه اي با نام هيدروالكتريسيته يا همان برق آبي وجود دارد و بيشتر افراد نيز با آن آشنا هستند.
در هيدروالكتريسيته ، آب از ارتفاعي به پايين مي ريزد و توربين ها را چرخانده و به اين ترتيب الكتريسيته توليد مي كند؛ اما روشي اين دانشمند باارزش كه ذكر شد، كاملا فرق دارد.
وي آب را تحت فشار قرار مي دهد و آنها را از كانال هاي ميكروسكوپي و بسيار بسيار ريز كه درون يك لوله شيشه اي قرار دارند، رد مي كند و به اين ترتيب مستقيما برق را از آب مي گيرد.
با عبور آب از سطح كانال ها، يونهاي آب به سطوح جامد ماليده مي شوند و شارژ الكتريكي شده و به كمك الكترودهايي كه در انتهاي هر يك از كانال ها قرار مي گيرند، انرژي الكتريكي استخراج مي شود.
گرچه جريان توليد شده در اين روش نيز بسيار كم و در حد 4 ميكرووات است ؛ اما اگر ميليون ها كانال با خصوصيات ذكر شده به يكديگر ملحق شوند، مي توان خروجي را افزايش داد و به اين ترتيب نيروي كافي خلق يك باتري آبي را به دست آورد.
ابررسانايي چيست ؟
از كشف ابررسانايي در سال 1911 ميلادي تا سال 1986 ، باور عموم بر آن بود كه ابررسانايي فقط مي تواند در فلزاتي در دماهاي بسيار پايين وجود داشته باشد، كه فقط در دماهاي حداكثر 25 درجه بالاي صفر مطلق اتفاق مي افتاد. با كشف ابررسانايي در دماهاي بالاتر در سال 1986 ، در موادي كه تقريبا ضد فرو مغناطيسي بودند، و در هواپيماهاي شامل a nearly square array of اتم هاي مس و اكسيژن، فصل جديدي در علم فيزيك باز كرد. حقيقتا، درك ظاهر شدن ابررسانايي در دماهاي بالا (حداكثر دماي 160 كلوين) يك مساله ي بزرگ براي بحث كردن مي باشد. تا آن جا كه امروزه بيش از ده هزار محقق روي اين موضوع تحقيق و بررسي انجام مي دهند.
پس از مقدمه اي بر مفاهيم پايه ي فلزات معمولي و مرسوم، دماي پايين، و ابررسانايي، مروري بر نتايج مشاهدات انجام شده در دهه ي گذشته خواهم داشت ، كه نشان مي دهند ابررساناهاي دماي بالا فلزات عجيبي با خواص غيرعادي بسيار بالاي ابررسانايي مي باشند. سپس، پيشرفت هاي نظري اخيري را شرح خواهم داد كه طبيعت چنين فلزات عجيب را آشكار مي سازد، و به شدت اين پيشنهاد را كه "تعامل مغناطيسي بين تحريكات ذره ي quasi مسطح است كه رفتار حالت عادي آن ها را به هم مي زند و باعث روي دادن حالت ابررسانايي در دماهاي بالا مي شود" پشتيباني و تاييد مي كنند.
در سال 1911 ، H. Kamerlingh-Onnes هنگام كار كردن در آزمايشگاه دماي پايين خود كشف كرد كه در دماي چند درجه بالاي صفر مطلق، جريان الكتريسيته مي تواند بدون هيچ اتلاف اختلاف پتانسيل در فلز جيوه جريان پيدا كند. او اين واقعه ي منحصر به فرد را "ابررسانايي" (Superconductivity) ناميد. هيچ نظريه اي براي توضيح اين رخداد در طول پنجاه و شش سال بعد از كشف ارائه نگرديد. تا وقتي كه در 1957 ، در دانشگاه الينويس ، سه فيزيكدان : John Bardeen ، Leon Cooper ، و Robert Schrieffer نظريه ي ميكروسكوپي خود ارائه كردن كه بعدا با نام تئوري BCS (حروف ابتدايي نام محققان ) شناخته شد. سومين رخداد مهم در تاريخ ابررسانايي در سال 1986 اتفاق افتاد، وقتي كه George Bednorz و Alex Mueller ، در حال كار كردن در آزمايشگاه IBM نزديك شهر زوريخ سوئيس، يك كشف مهم ديگر كردند : ابررسانايي در دماهاي بالاتر از دماهايي كه قبلا براي ابررسانايي شناخته شده بودند در فلزاتي كاملا متفاوت از آنچه قبلا فلز ابررسانا شناخته مي شود. اين كشف باعث ايجاد زمينه ي جديد ي در علم فيزيك شد : مطالعه ابررسانايي دماي بالا، يا .
در اين مقاله، كه براي غير متخصص ها تنظيم گشته است، اين را كه ما چقدر در فهم دماي بالا پيشرفت كرده ايم را توضيح خواهم داد و درباره چشم انداز هاي آينده ي توسعه ي يك نظريه ي ميكروسكوپي بحث خواهم كرد. من با مروري بر برخي مفاهيم پايه ي نظريه ي فلزات شروع مي كنم؛ برخي اقدامات كه منجر به ارائه ي نظريه BCS گشت را توضيح مي دهم؛ و كمي در باره ي تئوري BCS بحث خواهم كرد و آن را توضيح خواهم داد. سپس مختصرا در باره ي پيشرفت هايي كه به فهم ما از ابررسانايي و ابرسيالي، در جهان ارائه شده است، بحث خواهم كرد، پيشرفت هايي كه بوسيله الهام از تئوري BCS بدست آمده اند. كه شامل كشف رده هاي زيادي از مواد ابرسيال مي باشد، از هليوم 3 مايع كه چند ميلي درجه بالاتر از صفر مطلق به حالت ابرسيالي در مي آيد تا ماده ي نوترون موجود در پوسته ي سياره ي نوترون، كه در چند ميليون درجه به حالت ابرسيالي در مي آيد. سپس درباره ي تاثيرات كشف مواد ابررساناي دماي بالا بحث خواهم كرد ، و برخي نتايج تجربي كليدي را جمع بندي خواهم كرد. سپس يك مدل براي ابررسانايي دماي بالا ارائه خواهم داد ، نزديك به نظريه ي ضد فرومغناطيسي مايع فرمي ، كه به نظر داراي توانايي ارائه ي مقدار زيادي از خواص غيرعادي حالت معمولي مواد ابررساناي سطح بالا مي باشد. من با يك توضيح تجربي براي خواص جالب توجه حالت عادي ابررساناهاي پيش بيني شده و در دست بررسي جمع بندي و نتيجه گيري مي كنم، كه يك رده جالب از مواد را معرفي مي كند : مواد قابل تطبيق پيچيده . كه در آن بازخورد غيرخطي طبيعي، چه مثبت و چه منفي، نقشي حياتي در تعيين رفتار سيستم باز ي مي كنند.
ابررساناهاي مرسوم : از كشف تا درك ...
در سخنراني نوبل خود در سال 1913 ، Kammerlingh-Onnes گزارش داد كه "جيوه در 4.2 درجه كلوين به حالت جديدي وارد مي شود، حالتي كه با توجه به خواص الكتريكي آن، مي تواند ابررسانايي نام بگيرد. او گزارش داد كه اين حالت مي تواند به وسيله ي اعمال ميدان مغناطيسي به اندازه ي كافي بزرگي از بين برود. در حالي كه يك جريان القاء شده در يك حلقه بسته ابررسانا به مدت زمان فوق العاده زيادي باقي مي ماند و از بين نمي رود. او اين رخداد را به طور عملي با آغاز يك جريان ابررسانايي در يك سيم پيچ در آزمايشگاه ليدن، و سپس حمل سيم پيچ همراه با سرد كننده اي كه آن را سرد نگه مي داشت به دانشگاه كمبريج به عموم نشان داد.
اين موضوع كه ابررسانايي مساله اي به اين مشكلي ارائه كرد كه 46 سال طول كشيد تا حل شود، خيلي شگفت آور مي باشد. دليل اول اين مي تواند باشد كه جامعه ي فيزيك تا حدود بيست سال مباني علمي لازم براي ارائه ي راه حل براي اين مسئله را نداشت : تئوري كوانتوم فلزات معمولي. دوم اينكه، تا سال 1934 هيچ آزمايش اساسي در اين زمينه انجام نشد. سوم اينكه، وقتي مباني عملي لازم بدست آمد، به زودي واضح شد انرژي مشخصه وابسته به تشكيل ابررسانايي بسيار كوچك مي باشد، حدود يك ميليونيم انرژي الكترونيكي مشخصه ي حالت عادي. بنابراين، نظريه پردازان توجه شان را به توسعه ي يك تفسير رويدادي از جريان ابررسانايي جلب كردند. اين مسير را Fritz London رهبري مي كرد. كسي كه در سال 1953 به نكته ي زير اشاره كرد :‌ "ابررسانايي يك پديده كوانتومي در مقياس ماكروسكوپي مي باشد ... با جداسازي حالت حداقل انرژي از حالات تحريك شده بوسيله ي وقفه هاي زماني." و اينكه "diamagntesim يك مشخصه بنيادي مي باشد."


Label
نظرات در مورد:برق

نام شما:
نظر شما:
افزودن نظر



ورود به سايت | ثبت نام كاربر


صفحه نخست | تماس با ما
تمامی حقوق این سایت سایت متعلق به سایت DocIran.COM می باشد
طراحی شده توسط فراتک